Professional Motorsport World
  • News
    • A-E
      • Bodywork
      • Business Services
      • Chassis
      • Circuit News
      • Data Capture
      • Driver Safety
      • Electric Motorsport
      • Engine Technology
    • F-N
      • Karting
      • Legislative
      • Logistics
      • Materials
      • New Competition Car
    • O-S
      • Off Road
      • R&D
      • Race Series News
      • Safety
      • Show News
      • Simulation
      • Single Seaters
    • T-Z
      • Team News
      • Tin Tops
      • Tyres
      • Transmissions
      • Workshop
  • Features
  • Online Magazines
    • October 2024
    • September 2023
    • 2022
    • September 2021
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • PMW Expo
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Tire
  • Media Pack
LinkedIn Facebook YouTube Instagram
Subscribe
Professional Motorsport World
  • News
      • Aerodynamics
      • Bodywork
      • Business Services
      • Chassis
      • Circuit News
      • Data Acquisition
      • Driver Safety
      • Electric Motorsport
      • Engine Technology
      • Karting
      • Legislative
      • Logistics
      • Materials
      • New Competition Car
      • Off Road
      • R&D
      • Race Series News
      • Safety
      • Show News
      • Simulation
      • Single Seaters
      • Team News
      • Testing
      • Tyres
      • Transmissions
      • Workshop
  • Features
  • Online Magazines
    1. October 2024
    2. September 2023
    3. 2022
    4. September 2021
    5. April 2020
    6. Subscribe Free!
    Featured
    9th October 2024

    In this Issue – October 2024

    Online Magazines By Lawrence Butcher
    Recent

    In this Issue – October 2024

    9th October 2024

    In this Issue – September 2023

    21st September 2023

    In this Issue – 2022

    4th October 2022
  • Opinion
  • Videos
  • Supplier Spotlight
  • PMW Expo
LinkedIn Facebook Instagram YouTube
Subscribe
Professional Motorsport World
Features

Siemens PLM details the software solutions enabling continuous innovation for Renault Sport Formula 1

Sam PettersBy Sam Petters14th September 20186 Mins Read
Share LinkedIn Twitter Facebook Email
Siemens details the software solutions enabling continuous innovation for Renault Sport Formula 1

The dynamic between grip and drag dictates design preparation for each race over the Formula One calendar.

“Good grip enables the car to go faster but downforce also produces drag, which must be overcome by engine power,” says Peter Machin, head of aerodynamics at Renault Sport Formula One Team. “The ultimate goal is to generate a vertical force and push the tires into the ground while minimizing drag.”

The workflow of a Formula One car design is a 365-day-a-year process. Throughout the season, surfaces are continually being adjusted to accommodate the track, the driver and climate conditions.

“Our car could be seen as an aerospace prototype,” says Luca Mazzocco, head of technological partnerships, Renault Sport Formula One Team. “We need to deploy innovation race-by-race if we want to be a credible challenger, and that can be on a weekly basis and on 21 different tracks around the globe.”

Seventy percent of a car’s performance stems directly from its aerodynamic behavior.

Incremental improvements are made on day-to-day basis as stiffness, weight and cost effectiveness are balanced. Not surprisingly, aerodynamics is the largest department at Renault Sport Formula One Team; it commands the biggest budget and its supercomputer produces 60TB of data each week.

Aerodynamics involves both physical testing and simulation. Aside from the inherent limitations of a wind tunnel, the nature and extent of physical testing is restricted by Formula One regulations. The use of computational fluid dynamics (CFD) software is critical and, for more than 15 years, the company has been using Simcenter STAR-CCM+ software from Siemens.

As the use of strong, lightweight carbon fiber is critical to a racing car’s aerodynamic performance, Renault Sport Formula One Team also uses the Fibersim portfolio of software for composites engineering from Siemens PLM Software. This is used to manage the design, analysis and manufacture of fiber-reinforced composite parts.

Paul Cusdin, head of CFD for Renault Sport Formula One Team, says, “Our challenge is to ensure that the computational domain correlates with data captured from the wind tunnel, so we can ensure that every design upgrade will actually match up with reality.”

The focus is not only on speed; CFD is used for thermal simulation because an overheated car is a potential danger and must be called into the pits. On the other hand, there are clear restrictions on how much cooling can be applied to the engine during a race.

CFD is also used to simulate the action on the track, particularly when another vehicle directly in front is creating turbulence that not only makes it difficult to overtake it but could lead to a critical loss of downforce in one part of the car.

Siemens details the software solutions enabling continuous innovation for Renault Sport Formula 1 Another major question for the CFD experts at Renault Sport Formula One Team is how to get the most from the tires. It is not easy to model the geometry and wake behavior of tires in a wind tunnel, especially in high-speed corners when tire shape fluctuates. Another consideration is that within a tunnel, wind moves over the car rather than the car moving over ground.

“This area is where we have the least correlation between the physical and the computational,” says Cusdin. “Yet we need to extract more from the tires, for example, by placing geometry around the floor of the car in the best way possible for aerodynamics performance.”

CFD offers a design team insight into what happens in the wind tunnel.

“It shows the precise airflow over the car and tells us why we are getting certain results,” says Cusdin. “For example, simulation shows whether a vortex is above the wing or below it. It can introduce heat, which we cannot do in the wind tunnel, and illustrate thermal interaction. It tells us more about a specific design, indicating if it is close to optimal. In short, the computational domain not only augments the physical domain, it also improves it.”

In one instance, members of the CFD team were looking to incorporate the power of the fast-moving air from the exhaust to enhance downforce, but results on the track were disappointing.

By further analyzing the physics, they discovered that modeling the exhaust as a steady jet rather than a series of pulses had inadvertently led Renault Sport Formula One Team designers down the wrong path. CFD solved this engineering challenge by simulating the pulse aspect and allowing engineers to visualize its repercussions on the airflow.

“When we test different geometries in the wind tunnel, we learn whether they are better or worse than the prior design, but we only rarely understand exactly why,” says Cusdin. “Understanding the vortex created by the front wing is particularly important because the rest of the car depends on that; yet CFD has been rather poor at capturing the wake structure at the front of the car.

“However, Siemens PLM Software introduced a turbulence model within the latest enhancements for Simcenter STAR-CCM+ and now we can look at all the vortices shed off the front, side and rear and clearly see how these react with the field downstream.”

The CFD team aims to calculate and recalculate design changes within a few hours so that clear information is available for designers.

“Our simulation pipeline is very simple,” says Cusdin. “Other CFD software requires extensive coding, but we only write code for each new set of environmental parameters. This is the unique advantage of Simcenter STAR-CCM+ and it means that we can create templates for the design team.”

As a result, design engineers can replace any surface and continuously re-run the same simulation. By accessing templates from within the system, they do not even have to open Simcenter STAR-CCM+ or see the solver. In this way, the CFD team iterates in step with the design department as aerodynamic shapes are assessed for performance.

Promising geometries are sent to the wind tunnel and reassessed through CFD. Designs are released for manufacture only when results from the wind tunnel match those from simulation. In accordance with Formula One regulations, the wind tunnel car is a 60% scale model.

Because of the fast testing cycle and shape complexity, most wind tunnel model parts are made using additive manufacturing, a technology that is also involved in making several full-scale car parts. In some cases, this process can be completed overnight, though more complex parts may take several weeks.

Siemens details the software solutions enabling continuous innovation for Renault Sport Formula 1

Share. Twitter LinkedIn Facebook Email
Previous ArticleNissan purchases stake in Formula E team partner E.Dams
Next Article Changes made to Singapore Formula 1 track for 2018

Related Posts

Features

How WRC lost its hybrids – and what this means for 2025

9th April 20255 Mins Read
Features

Why Toyota is perfecting the rally to road relationship. PMW speaks to Jari-Matti Latvala

25th January 20255 Mins Read
Features

Tech Insider: Bugatti Cosworth V16

27th December 20249 Mins Read
Latest News

Audi announces organizational restructure ahead of F1 debut

7th May 2025

The Sensor Connection launches extreme-duty racing exhaust gas temperature probe

7th May 2025

Singer reimagines Porsche 911 Carrera Coupe

6th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Becker GmbH CAD-CAM-CAST
Getting in Touch
  • Contact Us / Advertise
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • Instagram
  • YouTube
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Tire
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
vuid1 year 1 month 4 daysVimeo installs this cookie to collect tracking information by setting a unique ID to embed videos on the website.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by